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ABSTRACT

This paper studies the control system

;(t) - X(x(t)) + Y(x(t))u(t), x(po - 0, Ju(t)l 1,

where X and Y are vector fields on a 3-dimensional manifold M.

Under generic assumptions on X, Y, the structure of the time-optimal

stabilizing controls is completely determined in a neighborhood of Po" The

proofs rely on a systematic use of a local asymptotic approximation of X

and Y by means of vector fields which generate a nilpotent Lie algebra.
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0
SIGNIFICANCE AND EXPLANATION

0
Let f, g be smooth vector fields on Rd . The problem of local

stabilization for the control system

;(t) - f(x(t)) + g(x(t))u(t) (M)
.0

with f(o) - 0 1 3, Iu(t)l 4 1, is the following. Given a state i in a

neighborhood of the origin, find a control u(e) that steers the system

from R to the origin. If the transfer is accomplished in the shortest

possible time, u(*) is said to be time optimal. In this paper, the time

optimal local stablization problem is solved in dimension 3, under generic

conditions on the nonlinear vector fields f, g. Our basic technique is a

rescaling of time and space coordinates which transforms () into the system

(XX 2 ,X3  (U,XX2 + kx2/2) + hx)

When h - 0, an explicit solution is found. A perturbation analysis then

shows that the local structure of time optimal trajectories is retained under

the addition of a suitably small vector field h(.). An a consequence, the

time optimal controls can be written in regular feedback form.

I . . . .

----------------------------------------------------

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.
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THE GENERIC LOCAL TIME-OPTIMAL STABILIZING CONTROLS IN DIMENSION 3

Alberto Bressan

1. Introduction

Lot M be a 3-dimensional manifold, P0 e M and let X, Y be smooth vector fields

on M with X(po) - 0. Consider the control system

;(t) - X(y(t)) + Y((t))u(t) (1.1) .

y(O) - po

where the scalar control u(-) is measurable and satisfies fu(t)l 4 1 almost everywhere.

This paper provides a description of all admissible controls that steer the system (1.1) in

minimum time from po to any point p in a neighborhood of Po" We show that the

structure of the local time-optimal trajectories is completely determined by the Lie

brackets up to order three of X and Y at Po' under the generic assumptions

(AI) The vectors Y, [Y,X] and [Y,X],X] are linearly independent at P0'
3

(A2) [Y,[YX]I(po) - 1 Y(Po) 
+ R2 [YX](Po) + E3 ([YX],X](p 0 ) with IR31 0 1.

For the system (1.1), a numerical algorithm yielding a stabilizing control was studied in

S [7]. 7ussmann (12] provided a complete description of time-optimal trajectories for

analytic systems in the plans. -WhwraeMwork is part of a general program of research
A ( # -' _ - .

whoes goal is to determine the local properties of control systems of the form (1.1) from

the linear relations among the Lie brackets of X and Y at p ur main technique is

the local approximation of (1.1) by means of a nilpotent system defined on the same state

space (1]. Somewhat different approximations were discussed in [3, 6] and applied in

[8, 111 to obtain results on local controllability. From (1.1), a suitable rescaling of

time and space coordinates leads us to the system

p

Istituto di Matematica Applicata, Universitl di Padova, 35100 ITALY.
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S

(X,XX 3) = (ux 1 rx2 + kx2/2) + h(x)

(1.2)
(xlX 2 fx 3 )(o) - (0,0,0) , t e [0,1]

where k R " and the vector field h(*) is as small as we please, togebter with all of

its high-order partial derivatives. In the special case h 2 0, the trajectories of (1.2)

are easily computed as integrals of the control. The time-optimal controllability problem

can therefore be explicitly solved applying Pontryagin's Maximum Principle. We use the

directional con'vexity of the reachable set and a global necessary condition (2] to rule out

the optimality of bang-bang controls with more than two switchings. In the general case,

h can be regarded as a small perturbation. Repeated applications of the implicit function

theorem complete the proof. The asymptotic approximation technique used here appears to be

quite general and might be effective in the study of higher dimensional systems as well.

-2-



2. The Main Theorem.

As a preliminary, notice that if (Al) holds, by the implicit function theorem the

equation

[Y,[Y,X}](y) - kl(y)Y(y) + k2 (Y)IYXJ(y) + k3 (y)[t,X,X(y) (2.1)

uniquely defines the smooth functions k1 (y) in a neighborhood V of P0" if (A2) holds

with Ir3 > 1, we can also assume k3 (Y) I > 1 for all y e V. Two special families of

trajectories will be considered.

Definition. Let y(.) be an absolutely continuous map from 10,T) into M with

y(O) - Po We say that y is a BBB-trajectory for the system (1.1) if there exist

0 T 1 4 T2 -C T such that

- X(y) + Y(y) or y - X(y) - Y(y) (2.2)

on each one of the (possibly empty) subintervala (0,T1), (T1 ,T2), (T21 T). We call y(.)

a BS3-trajectory if there exist 0 C TI < 2 
< 

T such that (2.2) holds on (0,T1 ) and on

(r2 1 ), while

- Xty) + k3(y)Y(y) (2.3)

on (T1 ,T 2

Our main result states that the bang-bang and the partially singular trajectories just

defined are locally the only optimal ones.

Theorem 1. Consider the system (1.1) and let (A), (A2) hold.

i) If 1931 < 1, then there exists a neighborhood V of P0 in U such that every

time-optimal trajectory steering P0 to a point p e V is a BB-trajectory.

ii) If 1931 > 1, then there exists a neighborhood V of P0 such that every

trajectory steering Pa to a point p e V in minimum time ia either a BB- or a SB-

trajectory.

By inverting time and the vector fields X, Y, Theorem 1 thus yields the solution of

the generic local time-optimal stablization problem in dimension three. A noteworthy

consequence is that, at least for analytic X and Y, this solution can be written in

regular feedback from [13]. When IR31 < 1, (1.1) behaves essentially like a linear .

-3-
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system. Part i) in Theorem I could already be deduced from [10]. When Iry > 1, the

nonlinearities begin to play a major role, and a careful analysis is required. In sections

3, 4 we prove that Theorem I is a consequence of an analogous result (Theorem 2) concerning . S

the system (1.2). The main steps in the proof of Theorem 2 are collected in 15. Technical

details are then worked out in 116 to 10, which may be skipped in a first reading.

-4
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3. An Equivalent Result.

By introducing a suitable set of coordinates, (1.1) will be transformed into a more

tractable system on i3• Zn the following, the variable in 3  is x - (xlx 2,x3  and

(e,,e3,oe3) denotes the canonical orthonormal basis. Given a smooth vector field -

(g1 ,9g2 ,g3 ) on 23, its partial derivatives are written

I gi 3291
ai, x " * , i, x -

Vg denotes the 3 x 3 matrix (gi,j) of first order partials of g. Consider the map

e (air$ 2',a3 ) + (exp S1Y) * (exp s2 (YXJ)' (exp s3 ((Y,X],XI)(po) , (3.1)

where (exp sz)(p) is the value at time a of the solution of the Cauchy problem

;(t) = Z(y(t)) , y(O) - p a .

Because of (Al), e defines a local chart of a neighborhood of pa. In this chart,

the system (1.1) becomes

-f(x) + eau , x(0) -0e 3  • (3.2)

The vector field f can be written in the form
(x l-2 ,X - 2 , X 32 (33)

(X) x1 /2 , x + k2x1 /2 , x + x /2) + f(x) (3.3)

with fIij(0) - fi',1(0) - 0 for i - 1,2,3, j - 1,2.

Since the problem is local, we can assume that e is defined on some open ball

ar c a
3 centered at the origin with radius r, and that f can be extended outside Br

to a C -ector field, still called f, with compact support. we now apply to (3.2) the

asymptotic rescaling procedure discussed in (1]. Consider the orthogonal decomposition50

3- 1 0 W2 0 P3 with Vi - ( eW 6 . Let w I R Wi be the canonical projections.

Given an admissible control u(I), let t + x(u~t) be the corresponding trajectory of

(3.2). If u is defined on the time-interval 10,C], construct the rescaled control

uc : (0,11 + t by setting uc(t) - u(Ct). Moreover, set

x C(u¢,t) m 3 -1 w I(x(u,It)) ( (3.4)
i-1

A direct computation shows that xt  is the response of the system

w(t) - f'(x(t)) + elut(t) x(0) - 0 e t3  (3.5)
with f¢ (ff 20 f 3

* 0
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f (x) - 1Ifif e3j (x)) . (3.6)

For every c > 0, (3.5) is merely a linear rescaling of (3.2). Therefore, a

control u is time-optimal for (3.2) on [0,E] if and only if the corresponding u, in

time-optimal for (3.5) on 10,1]. Because of (3.3), the main result proved in [I] now

implies that, as C + 0, f converges to the vector field

P(x) - (Oxlx 2 + 93x,/2) (3.7) .0

together with all partial derivatives, uniformly on bounded sets. Theorem I thus becomes a

consequence of the following result concerning the system (1.2). If k O 0, we write 0k

for the open box (-2,2) x (-1,1) x (-1-k, 1+k) c R
3
, C

3
(a k) for the Banach space of three

times continuously differentiable vector fields on n k' and we let F be the family of .

all neighborhoods of the null vector field in C
3
(ok).

Theorem 2.

a) If 0 4 k < 1, then there exists V e F such that for all h e V, 0 f T C 1, every

time-optimal control u(.) for (1.2) on (0,T] is hang-bang with at most two

switchings.

b) If k > 1, then there exists V e F such that, given any h e V, every time-optimal

control u for (1.2) on [0,T] c (0,1] has the following property. Either u is P.
bang-bang with finitely many switchings on [0,T], or there exist 0 4 t I < t2 < T

such that u(t) is constantly equal to +1 or -1 on [O,t 1] and on [t2 ,T],

while u(t) - kI (x(t)) on (t1,t2 ). Here I 3(x) is the third coefficient in the

linear relation

[e,[Ce,g]l(x) = k,(x)oe + k2 (x)[e,g](x) + k3 (x)[ 1[m1 gjg](x) , (3.8)

with g -? + h.

c) If k > 1, then there exists V e F such that, if h e V and u is a bang-bang

control with initial switchings at times 0 < tl < t 2 < t 3 - 1, then u is not time-

optimal for (1.2) after time 1.

As usual, statements concerning controls in LI are always meant "up to

equivalence".

-6-



4. Proof of Theorem 1.

Let Theorem 2 hold. By possibly replacing Y with -Y in (A) we can assume

k3 ) 0. Consider the case 0 ( <3 < 1 first. Set k - E3 and choose the neighborhood

V e F according to a) in Theorem 2. Choose C ) 0 so mall that the reachable set at

time e for the system (1.1) is contained within the range of the chart e, i.e.

R(E) C ecs ), and such that kc ar h - fc - F e V. This is possible because, as

e + 0, the convergence of fC to ? in (3.6), (3.7) is uniform on the bounded set 0k

(1]. If the control u steers the system (1.1) from P0 to some point p e R(C) in

minimum time n I( e, then the control t + uE(t) = u(Ct) is time optimal for the system

(1.2) on the interval [O,ne
"
] _ (0,1]. By a) in Theorem 2, u. in bang-bang with at

most two switchings, hence the ame holds for u. Taking V - R(c), this proves i) in

Theorem 1. The proof of ii) is similar. If R3 > 1, set k = 3 and choose V e F

according to b) and c) in Theorem 2. Choose a > 0 such that R(C) c e(Br), tok C Br,

fn - f e V for every n 6 10,€]. If 0 < n 4 a and the control u is time-optimal for

(1.1) on 10,01, then, setting h - ft - F, the control t + u¢ (t) = u(at) is optimal

for (1.2) on [0,na " ] c (0,1]. By b) in Theorem 2, either uC is partly singular, or

ue is bang-bang with finitely many switchings, hence the same holds for u. In the first

case, comparing (3.8) with (2.1) one concludes that u generates a BSB-trajectory, because

the linear relations among the Lie brackets of the vector fields f, a1  are preserved

under the transformation (3.6). In the second case, if u has more than two switchings

inside [0,0), let 0 < t i < t 2 < t 3 - ' < n be its first three switching times. The

control t + u,(t) - u(n't) has then its third switch at t - 1. Since fn' - T e V.

using c) we ae that un, is not optimal after time 1, hence u is not optimal at time

n >', a contradiction. Taking V - R(C), this completes the proof of part 1i).

-0
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5. Sketch of the Proof of Theors 2.

In the following, we denote T(x) the vector field with components (OXlwx2 + kxl/2)}

h In the small perturbation and g - 1 + h. We write BC for the open ball centered at S

the origin with radius C. When h 0, the exact solution of (1.2) is

x (u,t) - u(s)d,

x2 (u,t) - (t-s)uls)ds (5.1)
k its 2

x3(u,t) - 1 + A ' u(r)dr) ds

If u is an *dmissible control, i.e. if lu(t)l 4 1 almost everywhere, then for

t e [0,1] the trajectory t + x(ut) is contained inside the closed box

1 1 k+ k+1
[-1,1] x 6- , -] x -- , -- ]. By a classical perturbation tbh re m [5], there exists

a bounded neighborhood V0 e F such that, if h e V0 , every admis.-,e trajectory for

(1.2) remains inside [k during the time interval (0,1]. The neighborhood V0  now

chosen will be kept fixed throughout. The first part of our proof will single out all

solutions of the Pontryagin's equations for (1.2) on any interval (0,T] c [0,1].

k 2

(xIxI x (u+-xW + h W)
2,x3) (U + hIX), x + h2 (x), x2  2 1 3

(5.2) 1

(111 1 ) - -(X + kx X + E3  h
2 3 2 1 3 i1 il

13 1- E 1 h,2 1 , El 1 13Z.hi 3A ( 5.2)2

(xl,x 2 ,x3 )(0) - (0,0,0), (A1 ,A2,X3 )(T) - (A1 FA2 , 3 ) , (5.2)3

u(t) e sgn X1(t) a.e. on [0,T] , (5.2)4

where = (T 1 A72 , 3 ) 0 (0,0,0), 0 < T 4 1 and the convention sgn 0 = (-1,11 Is used.

Notice that for every data j and T, (5.2)1_4 has at least one solution. Indeed, the

compactness of the reachable set R(T) implies the existence of a control u for which

x(u,T) - max[<4 ,x>t x e R(T)). Such Z clearly yields a solution of (5.2). Different

types of extremal controls arise, depending on the direction of X.

-8-
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Proposition I. There exists V, e F such that, if h e V, and

-3 2 -(12k + 16)'2(TI2 + T2-2 th n the solution (u,x,X) of (5.2) is unique and the

corresponding control u in bang-bang with at most one switching.

Proposition 2. For every e > 0 there exists V2 e F such that, if h e V2  and

-3 2 ) (12k + 16)'2(T12 + 722), then any solution (u,xX) of (5.2) satisfies

A lt) e [(1 - k egn XI(t)) + B CE"A3  (5.3) 0

a.e. on (0,T].

The two above results together imply part a) of Theorem 2. Indeed, let 0 4 k < 1

and choose the neighborhoods V1, V2  according to Proposition I and 2 with C - (1-k)/2.

If h e V1 n V2 and if (u,x,X) is a solution of (5.2), then either

- 2 -2 - 2 - 2

C-3 (12k + 16)-2 2+ A2
2 ) and by Proposition 1 u is bang-bang with at most one

switching, or X2 (12k + 16)2 (X12 + X2
2 ). In this case, by (5.3) and the choice of

C, 1 (t) has a.e. the same sign of A3 (T) A 3 # 0. Hence A I is either strictly concave

or strictly convex on (0,T] and can vanish at most at two distinct points. The

corresponding control u is therefore bang-bang with no more than two switchings. Next,

we assume k > I and study the case where the third component of A is large compared

with the others.

Proposition 3. If k > 1, there exists V3 e F such that every solution (u,x,X) of
-32 -612- 2 -

(5.2) with h e V3 , A3  ) (12k + 16) 2T 1 + y22 ), T3 < 0, has the following property.
There exist 0 4 T1, T 2 T such that u is constantly equal to +1 or -1 on [0,T

and on [r2 ,TI, while u(t) - k 1(x(t)) on (TIV 2 ). Here k3 (x) is the scalar function

defined at (3.8).

Proposition 4. If k > 1, there exists V4 e F such that, for every solution (u,x,A)

2 2(- 2 - 22)
of (5.2) with h e V4 , A3  ) (12k + 16) 1 and T3 > 0, either the control u

Is bang-banq with finitely many switchings on [0,T], or u(t) - k;1 (x(t)) throughout

33[0,T).•

-9-
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Propositions 1, 3 and 4 clearly imply part b) of Theorem 2. To prove c), define the

set of vectors

3{W- (w2,,w3)e R3; w 2 (12k + 16) 22 + w)2 0
A~ * w=e 3 ''1 2

Choose V1 e F according to Proposition 1. An application of Theorem 2 in [2] yields

Corollary 1. If h e V1, then the reachable set R(1) for the system (1.2) is

A - convex, i.e. R(1) contains the point Ep + (1-t)q whenever p, q e R(1), t e [0,1]

and p-q e A.

Let now u be a bang-bang control satisfying Pontryagin's conditions and having a

third switch at time t - 1. To prove that the value x(u,1) of the corresponding

trajectory at time I lies in the interior of R(1), it suffices to exhibit a second

admissible control. say ul, such that

xi(u',l) - xi(u,1) for i - 1,2 , x3 (u',1) > x3 (u,1) (5.4)

Indeed, if (u,xX) is a solution of (5.2), then X3 (1) > 0 because of Propositions I to

3. The vector w - x(u',1) - x(u,1) - (0,0,x 3 (u',1) - x3 (U,l)) therefore has a positive

inner product with X(1) and lies in the interior of A. By Theorem 1 in [2],

x(u,1) e int R(1). To complete the proof, we only need to show that such a control u'

always exists. For a, b, c ) 0 define the control u+ . u+(a,b,c) by setting 0

u +(a,b,c)(t) - I for t e 10,a) u [a+b, a+b+c) ,
(5.5)

u +(a,b,c)(t) - -1 for t e [a, a+b) u a+b+c, -)

If a,B,Y ; 0, define u-(a,B,Y)(t) - -u+ (a,O,y)(t). Call x+ = +(a,b,c) the point I
reached by the system (1.2) at time T = a+b+c, subject to the control u+(a,b,c) and

define x- = x(a,B,Y) similarly. In the special case h 0, the components of x, x-

can be explicitly computed from (5.1):

-10- _,o_
'1



... . -. -...

+ 22x I a-b+c , x 2 - (a+b+c)2/2- (b+c) + c2

113 (bc3 +3 3 + ba3 1 31

x 3 - (a+b+c) - (bc) + c + k[a + (ba) + . (c-b+a)
3 ]-

(5.6)

x; - +By , x2 . (a+B+y)
2 /2 + (0) 2 -y2

x; { 3 (a+k+Y) 3 + (O+Y)
3 _ y 3 

+ k a 3 + (0_0) 3 + 1 (Y_0)3]}

The three conditions

x " x2 - , a+C -+O+ - T (5.7)

imply the relations

a - bc/(a+c) , B - a+c , y - ab/(a+c) , (5.8)

a - OY/(*+Y) , b - a+y , - aB/(ay) • (5.9)

When these are satisfied, we have Ax - x (ab,c) - x(aO,y) = (0,0,x3 ) and a direct

calculation (see Appendix) shows that

x+ -x - [(a+b+c) - k(a-b+c)labc/(a+c) 9~ (5.10)

- [(a+O+Y) + k(a-B+y)]aBY/(t+y)

If a,b,c > 0 and u+(a,b,c) satisfies the Maximum Principle on [0, T+c] for some

t > 0, then the correaponding adjoint variable X in (5.2) satisfies

X3 (t) X3 > 0 Y t e 10,T]

X'1 (a) )1 (a+b) - ) 1(a+b+c) - 0

AI(t) - (i+k)T 3  for t e (a, a4b)

Xl(t) - (1-k)7 3  for t e (a+b, a+b+c) •

The above relation. imply (k+l)b - (k-1)c. Using this equality in (5.10) we obtain

+ -x (1-k)a
2 bc/(a+c) < 0 (5.11)x3 - 3

If u = u+(a,b,c), consider the control ul = u-(aBy) with a, B, y defined at

(5.8). When T - a+b+c - 1, (5.7) and (5.11) imply (5.4). Therefore u cannot be optimal

after time T - 1. The case where the banq-bang control u takes Initially the value

-1 can be treated similarly. Let u - u (M,B,y) for some a, 0, Y > 0. If Pontryagin'u

equations (5.2) are satisfied, then (M-1)0 - (k+1)y. Consider the control u' - u+(a,b,c)

-11-



with a, b, c defined in terms of a, 0, Y at (5.9). From (5.10) and the above equality

we now obtain

- x - (k+)a 
2  

/(*+Y) ) 0 • (5.12) 0
3 Ba

When T - a+6+Y - 1, (5.7) and (5.12) imply (5.4). Therefore u - u- cannot be optimal

after time T - 1. This establishes part c) of Theorem 2 in the case h B 0. Thanks to

the implicit function theorem, the above arguments remain valid when a small perturbation

h in added to the vector field P in (1.2).

Proposition S. There exists V5 e F such that, if h e V5  and if u is a bang-bang

control with initial switching. at times ti : 0 < t i < t 2 < t3 - I which satisfies

Pontryagin's equations (5.2) on (0,1] with X.1(1) - 0, then there exists a second .

admissible control u' such that (5.4) holds.

This will complete the proof of Theorem 2.

- 12
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6. Proof of Proposition 1.

Lemma 1. Let k )'0, A wthwith 21 2 + 31/2 - 1. Set 1 -(12k+16)
1  and

assume C 2 2(X2 + X2). Then at least one of the following holds 0

i) x1 I ) P 2 1 + (2k+1)l\ 3 1 + (2k+4)n

ii) I,2x1 ; (2k+I)1A3 1 + (2k+4)i.

Indeed, if ii) fails, since 1x31 n T we have

Ix I I 1 - 1A2 1 - IX3 1 ) 1 - 1(2k+l)AL3 1 + (2k+4)n] -n T

)o (Sk+10)n ; 21 + (2k+1)1A31 + (2k+4)n

Lemma 2. There exists a constant M > 0 such that every solution (u,x,X) of (5.2)1.4

with - 1, h e V0, satisfies

"1 jx (t)l c m v t e [0,T] , (6.1)

Ii(t)I 4 C , i 1t)C ,4 , i- 1,2,3 , t e [o,T) * (6.2)

Proof. Since V0  is bounded in C3 (A ), the operator norms of the matrices Vg(x) ofk

first order partial derivatives of g T !+h satisfy a uniform bound, say lVg(x)l < N,

for all h e VO, x e a k
By (5.2)2, (6.1) holds with - a . The bounds in (6.2) follows from (5.2)1.2 and

(6.1), with a possibly larger constant M.

To prove Proposition 1, it clearly suffices to consider the case 1. Set T -

(12k+16) "1 and define n' - nT/3M, with M being the constant in (6.1), (6.2). Choose a

neighborhood V1 c V0  in F such that lhi,j(x)l < n' for all xe "k, h e V1 ,

ij e (1,2.3). By Lemsna 1, two cases must be considered.

Case 1. Let j71l 1X2 1 + (2k+1)17 3 1 + (2k+4)n. Then for t e [0,T] c (0,1], using

(5.2)2 we obtain

[i 3 (t)l I 3yj'14 - i ,

1A3 (t)I I 11 31 +T , (6.3)

'i 2() 31 + Ti + 3Ti'M ,(6.4)

x 2(t:) I "T21 + IT31 + 2n AL

-13-



S1 (01 -C 12 2t 131 + 2n + 2k( 13 + N) " +2

Ix 1i(t) I I I1i2 I + 131 2+ ) 2 2k (lI 13 1+ n )  > ° 0 j
Therefore X (t) ' 0 throughout the interval [0,T]. From (5.2)4 we deduce u(t) -

sgn (t) - sgn TV The control u is thus uniquely determined and constant throughout

(0,T].

Case 2. Let 1A2 j ) (2k+1)1' 3 1 + (2k+4)Ti. From (5.2)1.2, using (6.3) and (6.4) we now

obtain

1A2(t) I IT21 1131- 21n
(6.5)

i 1(t)l (1721 - I731 - 2n3) - 2 (C 3 1 + ni) - 3n'M ) Ti > 0

By (6.5), X1(.) is a strictly monotone function, with at most one zero. By (5.2)4, the

corresponding control u() is bang-bang with at most one switching inside [0,T). We

claim that such a control u is unique, whenever h e V1, for a suitably small neigh-

borhood V1 e F. To set the ideas, assume A2 > 0, the case A2 < 0 being entirely

analoqous. Define the set

r - e3, xi, " 1, X2 4 1X1+X2), X ) (2k+1)1A3l + (2k+4)n}

and fix T e r, 0 < T C 1. For T e [0,T] define the control u(T,-) by setting

u(Tt) 1 when t e (0,T], u(T,t) - -1 when t e (T,T], and let x(T,.), A(T,*) be the

solutions of (5.2)1.3 corresponding to the control u(T,-). Since A e r, we already know

that any solution of (5.2)1_4 is of the form (u(T,*), x(T,*), A(T,.)) for some T e 10,T].

Notice that (5.2)4 holds iff either T - 0 and A1 (O,0) 4 0, or 0 < T < T and

A(IT,T) = 0, or T - T and A (T,T) - 0. Uniqueness will be established by proving that

a X (T,T) < 0 v T e (0,T] . (6.6)
dT

When h 0 in (1.2), a direct calculation yields

X (Ts) - 2T-S V S e [eT] ,

A3 (
T s) - 3 2 ( T a) " 2 + (T-s)X3

1(l,t) = + fT[T + (T-s) + k(2T-s) Ids

I t23 3

d 
(
T

'
r
)  -J - (T-) T - ki 3 

+ 
2k(T-T)T

d 1(rr 2 3 3 3

-A 2 + (1+2k)1A 31 + k1 C -(k+3)n < 0 . (6.7) •

-14-



This provee (6.6) when h - . To cover the general case, notice that (6.7) holds

uniformly as (TT,X) range in the compact set (T,TeR, 0 4 T < T < 1) x r. Moreover, by

the implicit function theorem, the total derivative of XI(T,T) w.r.t. T depends

continuously on T, T, X and on the partial derivatives of order e 2 of the vector

field h. Therefore, if the neighborhood V1 e F is suitably small, (6.6) still holds for

any h 6 V1. This completes the uniqueness proof.

15

-15-



7. Proof of Proposition 2.

Again it is not restrictive to assume IAI - 1. in this case the assuptions imply

173 1 ) (24k+32)-
2
. Let N be the constant in (6.1), (6.2) and choose some a > 0 for 0

which

(24k+32)2 (9+9M+lOk)Ma C £ . (7.1)

Choose V2 e F contained in V0  such that

1hij(x)f < a , fhit(x)j 4 a I , h1(x)j 4 a (7.2)

for all h e V2 , x e L,. ijt e {1,2,3). Since the right-hand side of (4.3) 2 is abolutely

continuous, we can differentiate (4.3)2 once moret

A ~ k X4 -k~~ x~ F3  3. 3.x~A - h (~

1_ 2 t 3 13 i i iIh i,lj jXx i I II il (0 73

Using the bounds (6.1), (6.2), (7.1), (7.2) and the relations

2 A 1  3  x3  3 hi 2 (x)Ai - kuA3 - khl(x)A3  " (7.4)

I 3I h A 1 4 301M , JA (t) - Cj 3aM , Ix11 < 21 1 i-1 1,3 1 3

we obtain

x o(t) - (1 - ku(t))T31 4 (9+1Ok+9M)MV 4 E(24k+32) 2 C OT31.

-16-
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8. Proof of Proposition 3.

Set e - (k-1)/2 and choose V' e F according to Proposition 2. Choose V" e F so

small that, whenever h S V" and g e !+h, the following conditions hold at every point

x 6 k"

i) The vectors el, [e*jg](x) and [[ml,g],g](x) are linearly independent.

ii) in (3.8), k 3 (x) > 1.

Such a V" exists. Indeed, when h = 0 we have g f and [e,](x) - (0,1,kxl),

[[e 1 l ,!] x) - (0,0,1), (0,,[e1 ,!](x) - (0,0,k). In this case the coefficients of the

linear combination (3.8) are k1 (x) - k2 (x) - 0, k3 (x) - k>1. By continuity, the

conditions i) and ii) remain valid when h ranges within a suitably small neighborhood of

the null vector field in C3
(fl ). Now set 3 - V' n V" and let (u,xA) be a solution

-2 2 2 +0 we2) clai tha S.of (5.2) with X3  ) (12k+16) ( 1  )e claim that S

(t e [0,T]i X 1 (t) - 0 is a closed interval, possibly empty. If t1, t2 e s, let

Ix1(M)I - max(I1x1t)I. t1 4 t < t2). 'f I(T) 0 0, then u(t) - sgn XI(t) is constant

on a neighborhood of T, hence A1  is twice differentiable at T. Since X3 
< 

0, (5.3)

and the choice of e imply that sgn Xf(T) - sgn X1 (T), a contradiction that proves our

claim. If S is empty, Proposition 3 trivially holds by setting TI - - 0. If S2P
contains a single point T, set TI - T2 " T. Finally, let S be a nondegenerate

interval, say [T1 ,T2]. We need to show that u(t) - k;1(xft)) a.e. on S. The relations

X1 (t) ( A1(t) - X(t) = 0 imply

<X(t), eI>" 0 ,

<-A(t), el - (Aft), Vg(x(t))el> - <A(t), [e1,g](x(t))> - 0

1
t )  

l>At), [e1 ,g[)xft))>

- <A(t), Vg(x(t)) CeIgl(x(t)) - V7el,g](x(t)) (g(x(t)) + uft)e1)>

- (Aft), ((e1 ,g],g](x(t)) - u(t)(el(elg]](x(t))> - 0 * S

Since Aft) never vanishes, for t e (TT 2) the vectors *I, [*l,g](x(t)) and

[[e 1 ,g],g](x(t)) - u(t)[el, [el,g]](x(t)), being orthogonal to A(t), are linearly

dependent. Because of the assumption i), u(t) is uniquely determined and thus coincides

with kC Cxt)), defined by (3.8). 9
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9. Proof of Proposition 4.

Some preliminary technical results are needed.

Lemma 4. Let T > 0 and let * be a twice differentiable concave scalar function, with 0

0(0) #(T) - 0, ;(0) 0, and let a' ml a2 be positive constants such that

t=,~ - <(,,1 0.(, - ;,)l o; Ott-t't (9.1,)i

for all t, t' e [0,T]. 7bon

lj(,)1 4 (0) - 4a(m 1 + 2M )3 i2(0) ( (9.2)
1 2 1

Proof. The first assumption in (9.1) implies T e 124(0)/a2. 2(0)/al]. Let a -

-4(0) > 0 and define the energy R(t) - $
2
(t)/2 + a#(t). Then

dZ(t), - I;(t)(*(t- ,)I C *,0)(1 2m )t.

Integrating from 0 to T we obtain

I -(T) 3(0)1 26(a 1 + 2M2)m;3 43(0) (9.3)

This implies (9.2) because

-)l I,(0) (;2(T) _ ;2(O))(I;(T)1 + 14(0)) -"

1 I3(T) - 3(0)l I(8) "1

Lemma 5. Let (dn)n i be a sequence of strictly positive numbers such that dn+ 1 ) d 2-C(.

for some constant C , I and all n ) 1. Then E1 dn .+

Proof. if the series converges, then dn + 0, hence d n C12 o l ,wt

suitably large. We claim that dN+n o n-ldN+1  for all n i 1. Indeed, if this inequality

holds for some n, then

d •i minx - Cx
2 

dN+l/n o( x 4 1/2C -

I C 2 d N+l/(n+l)

n n

By induction, our claim holds for every n • 1, showing that the series diverges, a •

contradiction.

Lemma 6. Let h e V0 and let t + (x(t),X(t)) be any local solution of the autonomous

differential equation on 0-

-18-
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;(t) = g(x(t)) + a1  X(t) -(t).Vg(x(t))

obtained by setting u(t) B I in (5.2)1.2. There exists a constant a' such that

j(d3 /dt3 )A (t) -C IA(t)I, f(d/dt)A 3 (t)I < O'lx(t)l (9.4)

whenever x(t) e "k" The smallest possible constant a, in (9.4) approaches zero as the

vector field h - g-F tends to zero in C
3
(lk

). 
The same holds for the system

;(t) = g(x(t)) - e1, X(t) = -A(t).Vg(x(t)) .

All of the above is clear because the left hand sides in (9.4) depend continuously on

x, A and on the vector field h e C3 (Ak), and vanish identically when h S 0.

Proposition 4 can now be proved. Fix 6 - (k-1)/2, choose V2 ,V3 e F according to

Proposition 2 and 3 and set V4 - V2 n V3 . Let h e V4 and let (u,x,A) be a solution of

(5.2) with 17 - 1, 7 satisfying the assumptions made in Proposition 4. If AI(t) - 0

for all t e [0,T], then (u,x,-A) is another solution of (5.2), hence by Proposition 3

u(t) - k3 1(x(t)) for all t. Now assume Xt(T) # 0 for some T e [0,T]. Then [T,T]

contains only finitely many zeroes of X . To see this, set m1 = (k-l-e)A3, 2 

(k+1+z)A 3 . whenever A(t) 9f 0, u is constantly equal to sgn A1 (t) on a neighborhood

of t, hence A is three times differentiable at t. By (5.3)
1

- 2 (9.5)
_t- 1 1 t ) l 4 -a1 < 0 .(9 .5 ) ,

2 dt2 1

If A vanishes infinitely many times inside [T,T], let To be the muallest time.

Recursively, set Tn+ 1  i tnf{t (T n,T1 X (t) - 0). By (9.5), 1 1(T) d 0 and TO is an

isolated zero of XI" By induction, one easily checks that the same holds for every n,

hence the sequence (Tn)n)I is strictly increasing. We now apply Lama 4 to the function

#(t) = JAl(Tn+t)l for each interval ITnTn+1). The second estimate in (9.1) is obtained

from (9.4) and (6.1), setting 0 Mo'. Using (9.2) we deduce

li (, 1 J )I I i(Tn)I - 4a(m 1+2m2)m-
3 1A(T)I

If infinitely many Tn were defined, by Lamm 5 En-01AI(T)i From (9.5) it follows

Tn+1 -n 211 (Tnfla-
1 , hence lim Tn - 4, providing a contradiction. An analogous

argument shows that A1 can have only finitely many zeroes inside [0,T). Hence the

corresponding control u is bang-bang with finitely many switchings. -

-19-
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10. Proof of Proposition 5.

We restrict the analysis to the came where u(t) - +1 on the initial interval

[0,t 1 1. When u(t) - -1 on [0,t 1) an entirely analogous argument applies.

14mma 7. Per every h in a suitably mall neighborhood V e F, there exists a unique

one-parameter family of bang-bang controls u(C) - +(a(Ct,b(C),c(C)), u e [0,1/2], having

a'= a first switch at time t = C and a third switch at t - I, which satisfy Pontryagin's

equations (5.2) on the time interval [C,1] with I1(C) X I1(1) - 0.

Proof. Whenever h e V is small enough, the proofs of Propositions 1 to 3 show that the

adjoint variable X(,) in (5.2) corresponding to a bang-bang control with at least two

switchings inside (0,1] must satisfy

A 3 (t) > 0, JA1(t)/A3 (1) - (1 - ku(t))l 4 (k-1)/2 (10.1)
3 1 3

a.e. on (0,11. To construct the one-parameter family u(C), for a fixed h e C (k),

g= +h and E e [0,1/2], let u - u+(ct 2 -E,1-t 2 ) be the control whose value is

initially +1 and has switchinge at times C, t2, 1, as in (5.5). Consider the Cauchy

problem on R6, starting at time t - E:

;(t) - q(x(t)) + eIu(t) , X(t) - -A(t)Vg(x(t))

(10.2)

x(M) = (exp 9(g+4e))(0) , X(E) = (0,v,1)

for some v e a. The above data determine uniquely a trajectory t + (x(t),X(t)). From

(10.1) it is clear that the control u u (tt 2 -C,1-t 2 ) satisfies the Maximum Principle
(1t1 )t i- ca (1th0aetlimta

(5.2) on a neighborhood of the interval It,1] if 1 I 12 1 ( 0. We claim that1

for V e F suitably small, the conditions

I (t - 11(1 -0 E < t2 < 1 (10.3)

implicitly define t2, v uniquely as functions of h, 4, for all h e V, e e [0,1/2].

Indeed, when h 3 0, the equations (10.1), (10.3) can be solved explicitly, first for V

as a function of t2 and t, then for t2 In terms of C:

M - (t2 -C)(-v-kt) + (t2-E)
2
(1-k)/2 • (10.4)

The right-hand side of (10.4) vanishes at the point t2 e (t,1) iff

v = (t2-)(1-k)/2 - k&. In this case

-20-
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A1I - (1-t2 )(t2 -C)(l+k)/2 + (1-t2 )
2 (1-k)/2 , (10.5)

hence X1 (1) - 0 1ff

(t 2 -&)/(1-t 2 ) - (k-1)/(k+l) . (10.6) 0

The exact value of t2 as a function of 9 is immediately obtained from (10.6). From

(10.6) it also follows

(t2-C) > (k-1)/4(k+l) , 1+9-2t 2 > 0 , 1-t 2 ) 1/4 (10.7)

for all C e (0,1/2). Differentiating (10.4) and (10.5) w.r.t. V and t2 respectively

and using (10.7) we obtain
I)(t 2 k-1

av 2 < 4(k+1) 
< 

0 (10.8)

t (1+C-2tl)(k+1)/2 + (k-1)(1-t ) > (k-1)/4 > 0 • (10.9)

t 2 2  
2

By the implicit function theorem, there exists a neighborhood V e F such that

(10.2), (10.3) determine (t2 ,v) uniquely as C
3  

functions of (h,E) in V x [0,1/2].

This proven Leima 7, by setting a(C) - 9, b(C) - t2 ()-C, c(E) - 1-t 2(9).

Next, it will be shown that Proposition 5 holds if the bang-bang control u belongs

to the one-parameter family u (a(C), b(c), c()) just defined. To this purpose we need a

technical result, whose proof is straightforward.

Lemma S. Let V e F and let (h,C) - *(h,C) be a C
2 

map from V x [0,1/2] into R

such that *(h,0) - 0 for all h e V and 4(0,E) > 0 for all & e (0,1/2]. Assume that

either i) ( /a[)(0,0) > 0 or ii) (30/3t)(h,O) - 0 for all h e V and

(a2, /32)(0,0) > 0. Then f(h,t) > 0 for all E e (0,1/2] and all h in some

neighborhood of the null vector field in C3(n ).

For h e V suitably small, we now construct a second one-parameter family of bang-

bang controls u'(E) - u(a( ),B( ),Y( )), choosing a, B, Y such that Q+B+y 1 and

the equalities in (5.4) hold, i.e.

Wi(exp Y(&)(g-el))(exp S(U)(q+OlI))(exp a(E)(g-e 1))(0)

(10.10)
- I (exp c(E)(gj+o 1 ) ) ( e x p h(t)(g-eI ) ) ( e x p a(E)(g+e 1 ) ) ( 0 )

-21-



for i = 1,2. When h 0, (10.6) implies

a(F) = E, b(E) - (k-1)(1-E)/2k, c(E) - (k+l)(1-&)/2k (10.11)

and a(E), 6(E), y(t) are obtained substituting the values (10.11) in (5.8). By the

implicit function theorem, the condition a(E) + 6(E) + y(E) = 1 together with (10.10)

defines a C
3 

map (h,&) + (ct,,Y) on V x 10,1/2], for a suitably small neighborhood

V e F. Notice that when h E 0 and C ranges inside [0,1/2), a(&) and 0(9) are

strictly positive, while y() > 0 for E > 0. Moreover, (dy/dt) - (k-l)/(k+l) > 0 at

E - 0. Setting * = y in Lema 8, we deduce Y(M) p 0 for all (h,E) e V x 10,1/2] with

V small enough. Therefore the bang-bang control u(E) = u-(a((),(Q.;,Y(C)) is well

defined. To prove the last inequality in (5.4), set *(h,g) - x3 (u'(C),1) - x3 (u(E),1).

For any fixed h, when E - 0 (10.10) has the obvious solution (0) - b(0), 8(0) - c(0),

y(0) - a(0) = 0. Call u the control u+(a(0),b(0),c(0)), which coincides with

u-((0), 0(0), y(0)) for all t e (0,1], and let t + (x(t)eI(t)) be the corresponding

trajectory and adjoint variable in (10.2). Since I vanishes at times 0, t2 = b(0), 1, P

as E + 0 we have

<1(1), x(u+(a(E),b(C),c(F)),1) - x(1)> -
1

[JI (t)(u+(a(E),b(C),c(&))(t) - u+ (a(O),b(O),c(O))(t)]dt

+ O(C 2 )] -  = o(E)

The same holds for U ( (),6(C),yCC))e therefore

lim <(C1),x(u-(U)1) - x(u(C),l)>
1 = )3 (1)(3 /3t)(h,0) = 0 (10.12)

&+0

From (10.12) we deduce (/3&)(h,0) = 0. When h E 0, (5.10) and (10.11) imply

(k-1) 2(k+1)(1-C)
2

*(0,C) = 2k[2kE+(k+1)(1-t)]

hence (2 /a2)(0,0) - (k-1)2 A > 0. By Lemma 8, x3(u'(&),l) - X3(u()O) > 0 for all

e (0,1/2] and h in a neighborhood of the null vector field.

To conclude the proof of Proposition 5, notice that for every constant c' > 0, in

(5.3) we can choose E > 0 so small that the conditions

-22-



XI(t)/1 3 - (l-k)l C C for t e (0,t1 ) U (t2,l) I

IX1 (t)/X 3 - (l+k)l 4 C for t e (tlt 2 )

together with Al(tI) - A 1(t2 ) A l(1) - 0, A1 (t) > 0 on (0,t1 ) imply

I(t2 -tl)/(1-t 2 ) - (k-1)/(k+l)f 4 C' , t1 I (1-t2 ) + ' • (10.13)

For e' > 0 suitably small, (10.13) implies t1 e [0,1/2]. Therefore, if h e V is small

enough, a bang-bang control u, which is initially positive and has switchings at times

0 < t1 < t2 < t3 - 1, can satisfy Pontryagin's equations (5.2) only if tI 4 1/2. But in

this case u is the member of the one-parameter family of control functions

u (a(9),b(C),c(&)) obtained by setting - t1 . Hence Proposition 5 holds for u.

-2.

I
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Appendix.

The equalities (5.10) are obtained from (5.6) to (5.9), using the relations ab - O',

, bc, as follows.

3 3 3 3 3
3(x3-x3 ) - (a+b+c) - (b+c) + c3 (0+0 +

3 3 _3 3 3
+ k[a + (b-a) -a . ( .) + (a-b+c)3

I

- a 3 + 3a2 (b-c) + 3a(b+c)2 + (b+c)
3  (b+c)

3 + c
3 

_ 1 3 30 2Y

.30Y
2 

_ y
3 

+ y
3 

+ kMa
3 

+ (b-a)3 a 3 -B3 + 302a - 36c28

+ O3 + c 3 
_ 3c 2(b-a) + 3c(b-a)

2 
- (b-a)

3 ]

- a 3 + 3a2b + 3a2c + 3ab 2 + 6abc + 3ac 2 + c 3 
- (a

3 + 3a
2
c

+ 3ac
2 + c ) - 3a

2
b
2
/(a+c) - 3(a

2
b + abc) + k[a

3 
- (a

3

2 2 3 2 2+ 3a c + 3ac + c ) + 3(abc + bc') - 3b c /(a+c)

+b c 3a 2 32 2 2
2 3b + 3ac + 3bc - 6abc + 3a

2 2  .

- 3ab
2 

+ 3abc - 3a
2
b
2
/(a+c) + a-3ax: - 3b2c2/(a+c) + 3b2c]

- - (a 2b2 + ab2 c + a2
bc + abc

2  a2b 2
)/(a+c)

x3 - 3-

- k(a2bc + abc 
2 + b2c2 .ab2c _ b2c2)/(a+.

abc [a+b+c - k(a-b+c)] 2 Y (m+l+Y+k(a-B+Y].-
a+ 2+y
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